(Academic Sessions 2014 – 2016 to 2016 – 2018) (To be filled in by the candidate)

MATHEMATICS

218-(INTER PART – II)

Time Allowed: 30 Minutes

Q.PAPER - II (Objective Type)

(A) 2

(B) 1

GROUP - I

Maximum Marks: 20

PAPER CODE = 8197

Note: Four possible answers A, B, C and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling

t	Il that circle in front wo or more circles will	result in zero mark in tha	t question.	
1-1	If $y = \sqrt{1 - x^2}$, 0 <	$(x < 1 then \frac{dy}{dx} = :$		
	$(A) \sqrt{x^2 - 1}$	$(B) \frac{1}{\sqrt{1-x^2}}$	$(C) \frac{x}{\sqrt{1-x^2}}$	$(D) \frac{-x}{\sqrt{1-x^2}}$
2	$\int 3^x dx = :$			60,
	$(A) 3^x + c$	(B) $3^x \ell n 3 + c$	(C) $\frac{3^x}{\ell n 3} + c$	(D) $3 \ln 3^x + c$
3	$\int_{0}^{\frac{\pi}{2}} \cos x dx = :$		730	
	(A) 0	(B) 1	(C) 2	(D) 3
4	If $f(x)$ has secon point of:	d derivative at " c " su	ich that f'(c) = 0 and	f''(c) < 0 then "c" is a
	(A) Maxima	(B) Minima	(C) Zero point	(D) Point of inflection
5	If $y = e^{\sin x}$, then	$\frac{dy}{dy} = $		
10		· dx		
		ax	(C) $e^{\sin x} + \cos x$	(D) $-e^{\sin x}\cos x$
6		(B) $e^{\sin x} \cos x$	(C) $e^{\sin x} + \cos x$	(D) $-e^{\sin x}\cos x$
6	(A) $e^{\sin x}$ $\cosh^2 x - \sinh^2 x =$	(B) $e^{\sin x} \cos x$		(D) $-e^{\sin x}\cos x$ (D) 2
	(A) $e^{\sin x}$ $\cosh^2 x - \sinh^2 x =$ (A) 1 $\frac{d}{dx} \sin^{-1} x =$:	$ \begin{array}{ccc} ax \\ (B) & e^{\sin x} \cos x \end{array} $ $ \vdots \\ (B) & -1 $		
7	(A) $e^{\sin x}$ $\cosh^2 x - \sinh^2 x =$ (A) 1 $\frac{d}{dx} \sin^{-1} x =$: (A) $\frac{1}{\sqrt{1+x^2}}$	(B) $e^{\sin x} \cos x$: (B) -1 (B) $\cos^{-1} x$		
7	(A) $e^{\sin x}$ $\cosh^2 x - \sinh^2 x =$ (A) 1 $\frac{d}{dx} \sin^{-1} x = :$ (A) $\frac{1}{\sqrt{1+x^2}}$ $\int \frac{1}{f(x)} \times f'(x) dx =$	$ \begin{array}{ccc} ax \\ (B) & e^{\sin x} \cos x \end{array} $ $ \vdots \\ (B) & -1 $ $ \begin{array}{ccc} (B) & \cos^{-1} x \end{array} $	(C) 0	(D) 2
7	(A) $e^{\sin x}$ $\cosh^2 x - \sinh^2 x =$ (A) 1 $\frac{d}{dx} \sin^{-1} x = :$ (A) $\frac{1}{\sqrt{1+x^2}}$ $\int \frac{1}{f(x)} \times f'(x) dx =$	(B) $e^{\sin x} \cos x$: (B) -1 (B) $\cos^{-1} x$	(C) 0	(D) 2

(C) 0

(D) 3

L-HR-G1-12-18 (2)

	CHIC-41-12-14 (2)					
1-10	Let $f(x) = x^2 + \cos x$, then $f(x)$ is:					
	(A) Odd function (B) Constant function					
	(C) Even function (D) Neither even nor odd					
11 The centroid of a triangle divides each median in ratio:						
	(A) 2:1 (B) 1:2 (C) 2:3 (D) 1:1					
12	The straight line $y = mx + c$ is tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ if:					
	(A) $c^2 = a^2 m^2 - b^2$ (B) $c^2 = b^2 m^2 + a^2$ (C) $c^2 = b^2 m^2 - a^2$ (D) $c^2 = a^2 m^2 + b^2$					
13	The perpendicular distance of line $3x + 4y - 10 = 0$ from the origin is:					
	(A) 0 (B) 1 (C) $\frac{1}{2}$ (D) 2					
14	Axis of the parabola $x^2 = 4ay$ is :					
	(A) $y = 0$ (B) $x = 0$ (C) $x = y$ (D) $x = 1$					
15	If α is the inclination of the line ℓ then $\frac{x-x_1}{\cos \alpha} = \frac{y-y_1}{\sin \alpha} = r$ (say) is called:					
	(A) Point slope form (B) Normal form					
	(C) Symmetric form (D) Intercept form					
16	The direction cosines of y-axis are:					
	(A) $(0,1,0)$ (B) $(1,0,0)$ (C) $(0,0,1)$ (D) $(0,0,0)$					
17	If α is the inclination of a line " ℓ " then it must be true that :					
	(A) $0 \le \alpha < \frac{\pi}{2}$ (B) $\frac{\pi}{2} \le \alpha < \pi$ (C) $0 \le \alpha < \pi$ (D) $0 \le \alpha < 2\pi$					
18	The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle with centre:					
	(A) $(-g, -f)$ (B) $(-f, +g)$ (C) (f, g) (D) $(0, 0)$					
19	Length of the vector $2\underline{i} - \underline{j} - 2\underline{k}$ is:					
	(A) 2 (B) 4 (C) 3 (D) 5					
20	The feasible solution which maximizes or minimizes the objective function is called:					
	(A) Exact solution (B) Optimal solution					
	(C) Final solution (D) Objective solution					
Page 100 and 1						

(Academic Sessions 2014 - 2016 to 2016 - 2018)

MATHEMATICS *

218-(INTER PART - II)

PAPER - II (Essay Type)

GROUP - I

Time Allowed: 2.30 hours Maximum Marks: 80

SECTION - I

2. Write short answers to any EIGHT (8) questions :

LHR-91-12-18

- (i) State sandwitch theorem.
- (ii) Express the area "A" of a circle as a function of its circumference "C".

(iii) If
$$f(x) = \begin{cases} x+2, & x \le -1 \\ c+2, & x > -1 \end{cases}$$
, find "c" so that $\lim_{x \to -1} f(x)$ exists

(iv) Define differentiation.

(v) Differentiate
$$\left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)^2$$
 w.r.t x

(vi) Find
$$\frac{dy}{dx}$$
 if $xy + y^2 = 0$

(vii) Find
$$\frac{dy}{dx}$$
 if $y = x \cos y$

(viii) Prove that
$$\frac{d}{dx}(\cos^{-1}x) = \frac{-1}{\sqrt{1-x^2}}, x \in (-1,1)$$

(ix) Find
$$\frac{dy}{dx}$$
 if $y = xe^{\sin x}$

- (x) Define power series.
- (xi) Find extreme values for $f(x) = x^2 x 2$

(xii) Find
$$\frac{dy}{dx}$$
 if $y = \sin h^{-1}(\frac{x}{2})$

3. Write short answers to any EIGHT (8) questions :

(i) Find $\frac{dy}{dx}$ using differentials if $xy - \log_e x = c$

(ii) Evaluate the integral
$$\int \frac{x}{x+2} dx$$

(iii) Evaluate the integral
$$\int \frac{1}{a^2 - x^2} dx$$

(iv) Evaluate the integral
$$\int x \sin x \cos x \, dx$$

(v) Evaluate the integral
$$\int x^2 e^{ax}$$
. dx

(vi) Evaluate the integral
$$\int e^{3x} \left(\frac{3 \sin x - \cos x}{\sin^2 x} \right) dx$$

(vii) Prove that
$$\int_{a}^{b} f(x) . dx = -\int_{a}^{b} f(x) . dx$$

(viii) Evaluate the definite integral
$$\int_{0}^{3} \frac{dx}{x^2 + 9}$$

(ix) Find the area bounded by cos function from
$$x = -\frac{\pi}{2}$$
 to $x = \frac{\pi}{2}$

16

16

(2) LHR-G1-12-18

- 3. (x) Solve the differential equation $\sin y \csc x \frac{dy}{dx} = 1$ (xi) Define optimal solution and feasible solution.
 - (xii) Graph the region indicated by $4x 3y \le 12$, $x \ge -\frac{3}{2}$

4. Write short answers to any NINE (9) questions :

an

18

5

5

5

5

5

5

5

5

5

- (i) Show that the points A (3,1), B (-2,-3) and C (2,2) are vertices of an isosceles triangle.
- (ii) Find an equation of a line through the points (-2, 1) and (6, -4)
- (iii) Find an equation of the line bisecting the first and third quadrants.
- (iv) Find an equation of the line with x-intercept: -3 and y intercept: 4
- (v) Convert 2x 4y + 11 = 0 into slope intercept form.
- (vi) Write an equation of the parabola with focus (-1,0), vertex (-1,2)
- (vii) Find the focus and directrix of the parabola $y = 6x^2 1$
- (viii) Find an equation of the ellipse with centre (0,0), focus (0,-3), vertex (0,4)
- (ix) Find the eccentricity and directrices of the ellipse whose equation is $25x^2 + 9y^2 = 225$
- (x) Define unit vector.
- (xi) Find a unit vector in the direction of the vector $\underline{v} = \frac{1}{2}\underline{i} + \frac{\sqrt{3}}{2}\underline{j}$
- (xii) Find a vector whose magnitude is '4' and is parallel to $2\underline{i} 3\underline{j} + 6\underline{k}$
- (xiii) Find a scalar " α " so that the vectors $2\underline{i} + \alpha \underline{j} + 5\underline{k}$ and $3\underline{i} + \underline{j} + \alpha \underline{k}$ are perpendicular.

SECTION - II

Note: Attempt any THREE questions.

Note: Attempt any Tricks queens
5. (a) If
$$f(x) = \begin{cases} \frac{\sqrt{2x+5} - \sqrt{x+7}}{x-2}, & x \neq 2 \\ k, & x = 2 \end{cases}$$

Find value of k so that f is continuous at x = 2

- (b) Show that $y = x^x$ has maximum value at $x = \frac{1}{e}$
- 6. (a) Evaluate $\int e^{2x} \cos 3x \, dx$
 - (b) The three points A (7,-1), B (-2,2) and C (1,4) are consecutive vertices of a parallelogram, find the fourth vertex.
- 7. (a) Find the area bounded by the curve $y = x^3 4x$ and x-axis.
 - (b) Minimize z = 2x + y subject to the constraints $x + y \ge 3$, $7x + 5y \le 35$, $x \ge 0$, $y \ge 0$
- 8. (a) Find the condition that the line y = mx + c touches the circle $x^2 + y^2 = a^2$ at a single point.
 - (b) Find x so that points A (1,-1,0), B (-2,2,1) and C (0,2,x) form triangle with right angle at C.
- 9. (a) Find the centre, foci, eccentricity, vertices and equations of directices of $\frac{y^2}{4} x^2 = 1$
 - (b) Find volume of the tetrahedron with the vertices A (2, 1, 8), B (3, 2, 9), C (2, 1, 4) and D (3, 3, 10)

173-218-I-(Essay Type)-28000

 $\frac{LHR-G_2-12-18}{\text{(Academic Sessions 2014-2016 to 2016-2018)}}$

MATHEMATICS

218-(INTER PART - II)

Q.PAPER – II (Objective Type)

GROUP - II

Time Allowed: 30 Minutes

Maximum Marks: 20

PAPER CODE = 8198

Note: Four possible answers A, B, C and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling

two or more circles will result in zero mark in that question.

1-1	d	
	$\frac{d}{dx} log_a x = 1$	•
	un	

(A)
$$\frac{1}{x}$$

(B)
$$x \ln x - x$$
 (C) $\frac{1}{x} \ln a$

(C)
$$\frac{1}{x} \ell na$$

(D)
$$\frac{1}{x \, \ell na}$$

$$2 \int \sin x \cos x dx$$

$$(A) \quad \frac{1}{2}\cos 2x$$

(A)
$$\frac{1}{2}\cos 2x$$
 (B) $-\frac{1}{2}\cos 2x$

(C)
$$\frac{\sin^2 x}{2}$$

(D)
$$\frac{\cos^2 x}{2}$$

$$\int \frac{1}{x\sqrt{x^2-1}} dx$$

(A)
$$\sin^{-1} x$$

(B)
$$tan^{-1}$$

(C)
$$\sec^{-1} x$$

(D)
$$\cos ec^{-1}x$$

If
$$x = f(\theta)$$
, $y = g(\theta)$ then $\frac{dy}{dx}$:

(A)
$$\frac{dy}{d\theta} \frac{d\theta}{dx}$$

(B)
$$\frac{dx}{d\theta} \frac{d\theta}{dy}$$

(C)
$$\frac{d\theta}{dy} \frac{dx}{d\theta}$$

(D)
$$\frac{dy}{d\theta} \frac{dx}{d\theta}$$

$$\int \frac{d}{dx} \sec hx = 1$$

(A)
$$\sec hx \tanh x$$

(B)
$$-\sec hx \tanh x$$

(C)
$$\tan h^2 x$$

(D)
$$\sec h^2 x$$

If at least one vertical line meets the curve at more than two points then curve is:

(A) A function

- (B) Not a function
- (C) One to one function (D) Onto function

$$\frac{d}{dx}\cosh x = :$$

- (A) $-\sin hx$
- (B) $\sec hx$
- (C) $-\sec hx$
- (D) $\sin hx$

 $\int \sec^2 x \, dx :$

- (A) $\tan x$ (B) $\frac{\sec^3 x}{3}$
- (C) $\tan^2 x$
- (D) $\sec x \tan x$

Solution of $\frac{dy}{dx} = \frac{-y}{x}$ is:

- (B) $\frac{y}{x} = c$
- (C) y = cx
- (D) xy = c

1-10	LHR-G2-12-18 (2) Domain of $f(x) = x^2 + 1$:				
	(A) R	(B) $R - \{1\}$	(C) $R - \{-1\}$	(D) [1,∞)	
11	Equation of line bisecting II and IV quadrant:				
	(A) y = x	(B) $y = -x$	(C) $y = \frac{1}{x}$	(D) $x + y = 1$	

- 12 Set of all points equidistant from a fixed point form:
 - (A) Ellipse
- (B) Parabola
- (C) Hyperbola
- (D) Circle
- Joint equation of two lines is $ax^2 + 2hxy + by^2 = 0$, if θ is angle between them, 13 then $\tan \theta = :$

(A)
$$\frac{2\sqrt{h^2 + ab}}{a + b}$$
 (B)
$$\frac{2\sqrt{h^2 - ab}}{a + b}$$

(B)
$$\frac{2\sqrt{h^2 - ab}}{a + b}$$

(C)
$$\frac{\sqrt{h^2 + ab}}{a + b}$$

- (C) $\frac{\sqrt{h^2 + ab}}{\sqrt{h^2 ab}}$ (D) $\frac{\sqrt{h^2 ab}}{\sqrt{h^2 ab}}$
- Focal chord perpendicular to axis of parabola is called: 14
 - (A) Latus Rectum
- (B) Eccentricity
- (C) Vertex
- (D) Axis

Horizontal line through (7, -9) is: 15

(A)
$$x = 7$$

(B)
$$x = -9$$

(C)
$$y = 7$$

(D)
$$y = -9$$

Projection of vector \vec{v} on vector \vec{v} is: 16 (A) $\frac{\overrightarrow{u} \cdot \overrightarrow{v}}{|v|}$ (B) $\frac{\overrightarrow{u} \cdot \overrightarrow{v}}{|u|}$ (C) $\frac{\overrightarrow{u} \times \overrightarrow{v}}{|v|}$ (D) $\frac{\overrightarrow{u} \times \overrightarrow{v}}{|u|}$

(A)
$$\frac{\vec{u} \cdot \vec{v}}{|v|}$$

(B)
$$\frac{\vec{u} \cdot \vec{v}}{|u|}$$

(C)
$$\frac{\vec{u} \times \vec{v}}{|v|}$$

(D)
$$\frac{\vec{u} \times \vec{v}}{|u|}$$

Distance of (x_1, y_1) from line ax + by + c = 0 is : 17

(A)
$$\frac{\left|ax_1 + by_1 + c\right|}{\sqrt{a^2 + b^2}}$$

(B)
$$\frac{|ax_1 + by_1 - c|}{\sqrt{a^2 + b^2}}$$

(C)
$$\frac{\left|ax_1 + by_1 + c\right|}{\sqrt{a+b}}$$

(A)
$$\frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}$$
 (B) $\frac{|ax_1 + by_1 - c|}{\sqrt{a^2 + b^2}}$ (C) $\frac{|ax_1 + by_1 + c|}{\sqrt{a + b}}$ (D) $\frac{|ax_1 + by_1 - c|}{\sqrt{a + b}}$

18 For ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, (a > b) then eccentricity e = :

$$(A) \quad \frac{\sqrt{a^2 - b^2}}{a}$$

$$(B) \quad \frac{\sqrt{a^2 + b^2}}{a}$$

(C)
$$\frac{\sqrt{b^2 - a^2}}{a}$$

(B)
$$\frac{\sqrt{a^2 + b^2}}{a}$$
 (C) $\frac{\sqrt{b^2 - a^2}}{a}$ (D) $\frac{\sqrt{b^2 - a^2}}{b}$

19 If \vec{v} is any vector then vector of magnitude 5 opposite to \vec{v} is:

$$(A)$$
 $5\vec{v}$

(B)
$$-5\vec{v}$$

(C)
$$5\frac{\vec{v}}{|v|}$$

(D)
$$-5\frac{\overrightarrow{v}}{|v|}$$

- System of linear inequalities involved in the problem is called: 20
 - (A) Coefficients
- (B) Solution
- (C) Problem constraints
- (D) Boundaries

(To be filled in by the candidate)

(Academic Sessions 2014 - 2016 to 2016 - 2018)

MATHEMATICS

218-(INTER PART – II)

PAPER - II (Essay Type)

GROUP – II

Time Allowed: 2.30 hours

'Maximum Marks: 80

SECTION-I

2. Write short answers to any EIGHT (8) questions :

LHR-G2-12-18

(i) Prove that $\cosh^2 x + \sinh^2 x = \cosh 2x$

(ii) Determine whether function $f(x) = \frac{x^3 - x}{x^2 + 1}$ is even or odd.

(iii) Evaluate
$$\lim_{x\to 0} \frac{\sec x - \cos x}{x}$$

(iv) Find
$$\frac{dy}{dx}$$
 if $y = \frac{a+x}{a-x}$

(v) Find
$$\frac{dy}{dx}$$
 if $x^2 - 4xy - 5y = 0$

(vi) Differentiate
$$x^2 - \frac{1}{x^2}$$
 w.r.t x^4

(vii) Differentiate
$$\sin^{-1} \sqrt{1-x^2}$$
 w.r.t x

(viii) Find
$$\frac{dy}{dx}$$
 if $y = \ell n \left(x + \sqrt{x^2 + 1} \right)$

(ix) Find
$$\frac{dy}{dx}$$
 if $y = e^{-2x} \sin 2x$

(x) Find
$$\frac{d^2y}{dx^2}$$
 if $y^3 + 3ax^2 + x^3 = 0$

(xi) Find
$$y_2$$
 if $y = \cos^3 x$

(xii) Find
$$\frac{dy}{dx}$$
 if $y = \ell n \left(\frac{x^2 - 1}{x^2 + 1} \right)^{\frac{1}{2}}$

3. Write short answers to any EIGHT (8) questions :

(i) Find δy and dy: $y = \sqrt{x}$, when x changes from 4 to 4.41

(ii) Evaluate
$$\int \frac{e^{2x} + e^x}{e^x} dx$$

(iii) Evaluate
$$\int (a-2x)^{\frac{3}{2}} dx$$

(iv) Evaluate
$$\int \frac{x+b}{(x^2+2bx+c)^{\frac{1}{2}}} dx$$

(v) Evaluate
$$\int xe^x dx$$

(vi) Evaluate
$$\int e^x \left(\frac{1}{x} + \ell nx\right) dx$$

(vii) Evaluate
$$\int_{-1}^{3} (x^3 + 3x^2) dx$$

(vii) Evaluate
$$\int_{-1}^{3} (x^3 + 3x^2) dx$$
(viii) Evaluate
$$\int_{0}^{\pi/3} \cos^2 \theta \sin \theta d\theta$$

16

16

18

5

5

5

- 3. (ix) Find the area between the x-axis and the curve $y = 4x x^2$ from x = 0 to x = 4
 - (x) Define differential equation.
 - (xi) Solve $\frac{dy}{dx} = \frac{y^2 + 1}{e^{-x}}$
 - (xii) Solve $\frac{dy}{dx} = 2x$

4. Write short answers to any NINE (9) questions :

- i) Write down equation of straight line with v intercent (2, 0) and v intercent (0, 4)
- (i) Write down equation of straight line with x-intercept (2, 0) and y-intercept (0, -4)
- (ii) Find an equation of a line bisecting 2nd and 4th quadrants.
- (iii) Find an equation of a line with x-intercept : -9 and slope : -4.
- (iv) Prove that if the lines are perpendicular, then product of their slopes =-1
- (v) Find the measure of angle between the lines represented by $x^2 xy 6y^2 = 0$
- (vi) Find focus and vertex of the parabola $y = 6x^2 1$
- (vii) Find equation of latus rectum of parabola $y^2 = -8(x-3)$
- (viii) Find an equation of an ellipse with foci (±3,0) and minor axis of length 10.
 - (ix) Find the foci and length of the latus rectum of the ellipse $9x^2 + y^2 = 18$
 - (x) Define direction angles and direction cosines of a vector.
- (xi) Find the projection of vector \underline{a} along vector \underline{b} and projection of vector \underline{b} along \underline{a} when $\underline{a} = \hat{i} \hat{k}$, $\underline{b} = \hat{j} + \hat{k}$
- (xii) Find a vector perpendicular to each of the vectors $\underline{a} = 2\hat{i} + \hat{j} + \hat{k}$ and $\underline{b} = 4\hat{i} + 2\hat{j} \hat{k}$
- (xiii) Convert 2x 4y + 11 = 0 into slope intercept form.

SECTION - II

Note: Attempt any THREE questions.

- 5. (a) Prove that $\lim_{x \to 0} \frac{a^x 1}{x} = \log_e a$ 5
 - (b) Prove that $y \frac{dy}{dx} + x = 0$ if $x = \frac{1 t^2}{1 + t^2}$, $y = \frac{2t}{1 + t^2}$
- 6. (a) Show that $\int \frac{dx}{\sqrt{x^2 a^2}} = \ln(x + \sqrt{x^2 a^2}) + c$
 - (b) The points A (-1,2), B (6,3) and C (2,-4) are vertices of a triangle, then show that the line joining the mid-point "D" of \overline{AB} and mid-point "E" of \overline{AC} is parallel to \overline{BC} and $\overline{DE} = \frac{1}{2} \overline{BC}$.
- 7. (a) Evaluate $\int_{0}^{\frac{\pi}{4}} \cos^4 t \, dt$
 - (b) Graph the feasible region of system of linear inequalities and find the corner points $2x + 3y \le 18, x + 4y \le 12$, $3x + y \le 12$ $x \ge 0, y \ge 0$
- 8. (a) Find an equation of parabola having its focus at the origin and directrix parallel to y-axis.
 - (b) Prove that the line segment joining the mid-points of two sides of a triangle is parallel to the third side and half as long.
- 9. (a) Find the centre, foci, eccentricity, vertices and equations of directices of $\frac{y^2}{4} x^2 = 1$
 - (b) Find the value of α , in the coplanar vectors $\alpha \hat{i} + \hat{j}$, $\hat{i} + \hat{j} + 3\hat{k}$, $2\hat{i} + \hat{j} 2\hat{k}$